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SUMMARY

In this work we develop a new framework for a posteriori error estimation and detection of anisotropies
based on the dual-weighted residual (DWR) method by Becker and Rannacher. The common approach
for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors
indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked
to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing
for the direct estimation of directional errors with regard to given output functionals. The resulting meshes
reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the
directional errors, the coarse meshes need some alignment with the dominant anisotropies. Numerical
examples will demonstrate the efficiency of this method on various three-dimensional problems including
a well-known Navier–Stokes benchmark. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dual-weighted residual (DWR) method [1, 2] for a posteriori error estimation and adaptive
remeshing or mesh refinement has been essentially established in the last years. Optimal mesh
refinement using isotropic elements is well understood and has been demonstrated in various
applications, such as fluid dynamics [3], reactive flow problems [4], or optimization and parameter
identification problems [5].

However, for three-dimensional problems, adaptive mesh refinement rapidly reaches its limits if
we only utilize isotropic meshes. This problem is easily understood considering e.g. singularities
in elliptic equations aroused by reentrant edges. The solution on an element K touching such a
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ANISOTROPIC MESH REFINEMENT WITH THE DWR METHODS 91

singularity behaves like u∼r� with |∇ku|∼r�−k . The polynomial interpolation ihu of degree p
exhibits the interpolation error

‖∇(u−ihu)‖K ∼h p−�‖∇ p+1−�u‖K
with a �∈[0, p]. For 90◦ reentrant edges, we get �= 3

4 and the error on an element KE at the edge
E with mesh size hE is given by

‖∇(u−ihu)‖2KE
∼h2p−2�

E

∫
KE

r3/2−2p−2+2� dx∼h5/2E

The accumulated error of all the N ∼h−1
E elements along this edge sums up to ‖∇e‖� ∼h3/4E .

Without considering additional error and elements within the domain we get a lower bound of the
approximation order independent of the polynomial degree:

‖∇e‖��N−3/4

The reason for this bad result is the enormous dissipation of elements along the singularity. A fine
mesh size hE is only necessary in the radial direction. Using anisotropically stretched elements,
O(1) elements along the edge would be sufficient for the same approximation quality.

The transition to an anisotropic finite element method (FEM) brings along several difficulties.
We will be using a hierarchical mesh structure based on hexahedra with local splitting of elements
instead of remeshing. To make anisotropic refinement possible, we allow for real bisection of
elements into two, four or eight new elements. Data structures for the handling of three-dimensional
meshes are very complex, especially the concept of hanging nodes has to be significantly extended.
We will give details on our realization of anisotropic meshes in Section 2. Using this structure we
cannot resolve arbitrary anisotropies within the domain. However, it is well suited for boundary
layers and anisotropies due to non-smooth geometry and all anisotropies aligned with the coarse
mesh elements. Further, this structure easily allows the use of efficient geometric multigrid methods
to solve the arising linear systems.

Using anisotropic meshes for the FEM, approximation and stability issues have to be analyzed.
Apel [6] introduced anisotropic interpolants and has derived interpolation estimates valid on a
large class of possible meshes. With these estimates most of the error analysis for finite elements
can be directly transferred to anisotropic meshes.

Considering the Navier–Stokes equations, stability problems can arise. Not all inf–sup stable
finite elements will also be stable on arbitrary anisotropic meshes. See [7, 8] for an overview of
the anisotropic stability of different elements. We will be using the local projection method [9]
for stabilizing the inf–sup condition as well as for stabilizing the convective term. With equal
order finite elements for both pressure and velocity, stability is gained by adding fluctuations of
the discrete functions with respect to a coarse finite element space. This discretization of the
Navier–Stokes equations is described in Section 6.

Focus of this work is the development of automatic anisotropic mesh refinement methods.
The usual approach for an a posteriori identification of anisotropies is the heuristic approach to
analyze the Hessian of the solution. The eigenvectors show the dominant directions of the error,
the eigenvalues the optimal stretching of the elements. This approach goes back to interpolation
estimates on anisotropic elements like [10] and is now well established for anisotropic mesh
generation, see [11–14]. While yielding good results in several applications, the approach is firmly
linked to the local minimization of interpolation errors. These are not necessarily local bounds
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92 T. RICHTER

for the approximation error and if at all they can only give hints on energy norm errors. In many
applications, certain functional values of the solution are investigated. With the DWR method [1]
the error in functionals of the solution can be estimated. In [15] and [16] a combination of
both, the DWR method with Hessian-based anisotropy recovery, is examined for discontinuous
Galerkin methods. While the error is estimated with the DWR method and this method is also
utilized for picking elements for refinement, the direction of the refinement is determined using the
Hessian-based approach. After deciding which elements are to be refined, recovery techniques for
higher derivatives of the primal and adjoint solution based either on projection errors or on jump
evaluations are used for determining the optimal element stretching and alignment. Although this
method uses adjoint-based error estimation, the correct balancing of primal and adjoint information
for the extraction of the anisotropy is not given. The authors of [17, 18] use a similar approach.
Here the error is estimated with the DWR approach and the directional information is gained by
solving a local optimization problem involving the Hessian of the adjoint solution.

All these methods do not yield a optimal balancing of primal and adjoint anisotropy information.
Either, the anisotropy is determined by analyzing the primal solution or the adjoint solution is
given by the functional, but not both.

Aim of this paper is to present a unified approach for a posteriori error estimation including
the detection of anisotropies. Instead of splitting the process of error estimation and anisotropy
detection, we will directly estimate directional errors using the DWR method.

In the subsequent section we will introduce the FEMwith anisotropic meshes and some notations.
Differing from the standard FEM on locally refined meshes, we will allow for more general meshes.
The third section is a short recapitulation of the DWR method on isotropic meshes. The central
fourth section contains the main results and is devoted to the DWR method on anisotropic meshes.
We will introduce a new concept for the detection of anisotropic solution patterns and adaptation of
the meshes. Then, we will consider several numerical examples to demonstrate the application of
this method. Section 5 describes basic test cases to study various effects of the proposed method.
In the final sixth section, we describe the stabilized anisotropic discretization of the Navier–Stokes
equations. Finally, the proposed method is applied to a well-known Navier–Stokes benchmark
problem.

2. FINITE ELEMENTS ON ANISOTROPIC MESHES

In the following we are solving systems of partial differential equations given in the weak formu-
lation. On a polygonal domain �⊂Rd with d=2,3, find u :�→Rc, c∈N, with u∈V

A(u)(�)=0 ∀�∈V (1)

where A(·)(·) is a semi-/bi-linear form, linear in the second argument and usually V =[H1
0 (�)]c.

For simplicity, we only treat the case of homogeneous Dirichlet data u=0 on the boundary �� of�.
The finite element solution uh of (1) is given in a subspace Vh ⊂V , a space of piecewise

polynomial functions defined on a triangulation �h of �.

2.1. Anisotropic finite element meshes

Key to the anisotropic FEM is the implementation of the mesh structure. We use a hierarchical
approach based on quadrilaterals in two and hexahedra in three dimensions. Starting with a coarse
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ANISOTROPIC MESH REFINEMENT WITH THE DWR METHODS 93

mesh, finer grids are realized by refinement of elements: a number of mesh elements is split
into smaller ones. The coarse mesh has to fulfill certain regularity conditions for finite element
meshes:

M1: The domain � is split into open elements �h ={K } with

�= ⋃
K∈�h

K̄

For K �=K ′, we have K ∩K ′ =∅ and K̄ ∩ K̄ ′ is either empty, or a common face, or a
common line or a common point of both elements.

M2: For every element K ∈�h , there exists a transformation TK :(0,1)d �→K with det(TK )(x̂)>0
for all x̂ ∈(0,1)d. Usually TK will be a polynomial of the same degree as the finite element
space (iso-parametric FEM). The transformation TK can be split into

TK :=RK ◦ScK ◦ShK ◦PK

where RK is a rotation and translation, ScK an (anisotropic) scaling, ShK a shearing and
PK the nonlinear part of the transformation. We further demand (uniform for all K ∈�h)
that the shearing and nonlinear part of the transformation are bounded.

M3: The jump in anisotropy between adjacent elements is limited by a constant �∈R. Further,
every mesh will have a patch structure: each 2d neighboring elements result from the
isotropic refinement (full bisection) of one common father.

Remark 1

1. [M1] is the standard regularity assumption for finite element meshes. For allowing local mesh
refinement we will introduce hanging nodes.

2. Assumption [M2] ensures shape regularity of the finite elements. By reducing the allowed
shearing and nonlinearity, we especially get a minimum and maximum interior angle condi-
tion. However, we still allow for arbitrary anisotropies.

3. Combining [M2] and [M3] we get sufficient conditions for anisotropic local interpolation
estimates [6, 19]. The exact definition of � will be given in Section 4.1.

4. If a mesh fulfills these three requirements, every refined mesh will also comply with [M1]
and [M2]. For [M1] this is obvious. It can be shown that the impact of the nonlinear part PK
decreases exponentially with mesh refinement [19]. The shearing part of the transformation
will not change with refinement.

Usual hierarchical finite element meshes allow the splitting of a quad into four and a hex
into eight hexahedra. Here, we allow for more general bisection of elements. See Figure 1 for
possibilities of element refinement. With local mesh refinement we introduce the concept of hanging
nodes: Two adjacent elements can have a different refinement level. A quad or hex can have nodes,
which are on the midpoints of adjacent lines or quadrilaterals. These nodes will not be degrees of
freedom (DOF), instead their value is replaced by interpolations from the neighboring points. We
do not allow recursive hanging nodes:

M4: No hanging line or quad may depend on another hanging node.
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x–refinement z–refinement x/y–refinement x/y/z–refinement

Figure 1. Some possibilities for refinement of one elements in three spacial dimensions.

1 2

Figure 2. Recursive hanging nodes.

Figure 3. Two hexahedra with opposite anisotropic refinement (left). Resolved
by adding further refinement (right).

In Figure 2 a situation of such a recursive hanging node is shown. Node 1 is hanging, but the
interpolation would depend on the hanging node 2. Although resolving this case with interpolation
applied in the correct sequence would be possible, we do not allow for this setting. Instead, we
change the mesh by introducing an additional refinement (one of the two dotted lines). Finally, we
will bar one special type of anisotropic refinement in three dimensions.

M5: No quad may belong to two hexahedra with opposite anisotropic refinement.

In Figure 3 that case is shown. The bordering quad for the two hexahedra in the left picture is
not valid. To resolve this situation we have to add one additional refinement in one of the two
hexahedra.

Using an a posteriori error estimator, we will pick elements for refinement and determine the
optimal bisection direction for every element. This will be described in Section 4.2. Before carrying
out the refinement we have to assure that the new mesh will comply with the mesh conditions
[M4] and [M5]. This is done by modifying the selection of elements to refine. Usually we pick
additional elements for refinement or we add more directions to an already chosen element.
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Algorithm 1: Anisotropic mesh adaptation

(1) Estimate directional error indicators �xK , �yK and average �avg over all K
(2a) Flag element K for refinement in direction x , if ‘error in direction x is large’
(2b) Flag element K for refinement in direction y, if ‘error in direction y is large’
(3) While mesh is not regular

(a) Resolve double hanging nodes by adding refinement directions
(b) Resolve antipodally refined quadrilateral by adding refinement directions

(4) Refine the mesh

Remark 2

1. Step (2) describes the actual adaptation method. We split element K in direction x , if the
directional error �xK of this element is larger than a given threshold. Since we check each
element for every direction separately, this can result in anisotropic or isotropic refinement.
Section 4.4 will give details.

2. For resolving the problem of interdependent hanging nodes, we try to remove the hanging
node on the element that is more coarse. This is usually the element containing the hanging
node, which is the last in the dependency chain. To resolve this problem in Figure 2, we
would flag the large element on the right side for a splitting y-direction. This process leads to
some over-refinement. In numerical examples in three spatial dimensions, we observe about
10% additional refinement due to mesh regularity.

3. For resolving antipodally refined quadrilaterals between two hexahedra, we have to add the
second refinement direction to one of the hexahedra. See the right sketch in Figure 3.

2.2. Finite element spaces

The finite element spaces on the anisotropic meshes are defined in the usual iso-parametric manner.
For two spatial dimensions using [M2], we have with r ∈N

Vh ={v∈V : v|K =TK (�),�∈span{xi y j : i, j =0, . . . ,r}}
The finite element solution uh ∈Vh is given by

A(uh)(�h)=0 ∀�h ∈Vh

and for a arbitrary function v∈V we define the Ritz projection Rhv by

Rhv : A(Rhv)(�)= A(v)(�) ∀�∈Vh (2)

3. THE DWR METHOD

In this section we will briefly present the DWR method and present the main results from [1],
important for this work. Let J :V →R be a three times directionally differentiable functional
and A(·)(·) : X :=V ×V →R a three times directionally differentiable form, linear in the second
argument. With x :=(u, z)∈ X , we define the functional L : X →R as

L(x) := J (u)−A(u)(z)
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96 T. RICHTER

The stationary point L ′(x)(y)=0 for all y∈ X indicates the solution u∈V of the primal problem
and z∈V of the dual (or adjoint) problem:

A(u)(�) = 0 ∀�∈V

A′(u)(�, z) = J ′(u)(�) ∀�∈V
(3)

In [1] we find the following substantial result:

Theorem 1 (DWR Method)
For the Galerkin approximations x ∈ X =V ×V and xh ∈ Xh =Vh×Vh of the variational
problem (3), we have the a posteriori error representation

J (u)− J (uh)= 1

2
min
yh∈Xh

L ′(xh)(x− yh)+R(3)(x−xh)

where the remainder term R(3)(x−xh) is given with e := x−xh as

R(3)(e) := 1

2

∫ 1

0
L ′′′(xh+se)(e,e,e)s(s−1)ds (4)

The remainder term vanishes, if A(·)(·) is bilinear and if the functional J (·) is quadratic. We
will discuss the behavior of this term for specific applications.

For the actual evaluation of the DWR error estimator, we have to approximate the primal and
dual interpolation errors (called the weights in this context).

A higher-order reconstruction of the discrete solutions uh and zh has been found to deliver
the best results. We introduce the space V (2r)

2h of piece-wise polynomials of double degree on the

mesh with double grid spacing. With the interpolation operator i (r)2h :Vh →V (2r)
2h into this space,

the interpolation error is approximated by

u−ihu≈ i (2r)2h uh−uh (5)

This method requires the patch structured mesh [M3], where every element is part of a set of four
(or eight in three-dimensional) elements, which result from global refinement. Other possibilities
for the evaluation of the weights are described in [19].

Theorem 1 holds on anisotropic meshes without modification. The remainder term can be
estimated by anisotropic a priori estimates and is of higher order. However, this representation of
the functional error cannot be used to identify the directions for refinement. Considering anisotropic
finite elements, the DWR method is usable for error estimation; however, it does not yield a
mechanism to generate optimal anisotropic meshes.

In the following section we will derive directional error estimators by a splitting of the DWR
estimator. This allows for a uniform approach of error estimation and anisotropy detection.

4. ANISOTROPIC FINITE ELEMENT SPACES

For the following analysis we introduce partially discretized function spaces. For simplicity of the
presentation, we restrict the discussion to two spatial dimensions. The partially discretized spaces
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Vx and Vy are defined as

Vx = {v∈V : v|K =TK (�),�∈span{xi�(y) : i=0, . . . ,r,�∈H1((0,1))}}
Vy = {v∈V : v|K =TK (�),�∈span{�(x)yi : i=0, . . . ,r, �∈H1((0,1))}}

In three spatial dimensions, the construction is analogous with always one discretized direction
versus two directions that are not discretized. Similar to (2) we define for a function v∈V the Ritz
projections into the partially discretized spaces

Rxv : A(Rxv)(�) = A(v)(�) ∀�∈Vx

Ryv : A(Ryv)(�) = A(v)(�) ∀�∈Vy
(6)

Lemma 1
The following properties hold:

(i) The spaces Vx and Vy are nested

Vh ⊂ Vx

Vy
⊂V

(ii) For functions v∈V , the Ritz projections commute

Rhv=RxRyv=RyRxv

Proof
(i) is a direct consequence of the construction of the anisotropic finite element spaces. With (6)
and (i) we have for the projection Rx :Ryv �→RxRyv:

A(RxRyv)(�)= A(Ryv)(�)= A(v)(�) ∀�∈Vh ⊂Vx

On the other hand using (2) we get Rhv=RxRyv. The same is true for RyRxv and (ii) holds.
�

4.1. Interpolation estimates for anisotropic function spaces

In this paragraph we derive estimates for special interpolation operators ix :V →Vx and iy :V →Vy .
The operator is an adaption of ideas in [6]. The considerations in this paragraph are limited to
meshes of tensor–product type. Extensions to more general meshes are technical, see [6] for an
overview. By K̂ we denote the patch of elements that share a common side with K . See Figure 4
for the construction of K̂ . We demonstrate the construction of the interpolation operator in x-
direction, that is for the operator ix :V →Vx . First we assume that u∈C(K̂ ) is smooth. Let �i for
i=0, . . . ,r be the Lagrange points in x-direction of element K . In fact these points are lines in
y-direction through the element K , see the three dotted thick lines in Figure 4 (here shown for the
case r =2). Now, let �i (x) be the one-dimensional nodal basis functions (polynomial of degree r )
in K with �i (� j )=	i j for i, j =0, . . . ,r .

Then, the nodal interpolation operator for smooth functions is given by

Nxu(x, y)|K =
r∑

i=0
�i (x)u(�i , y) (7)

and we have Nxu(�i , y)=u(�i , y) for all (�i , y)∈ K̄ .
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hy

(χ,   )y (χ,   )y (χ,   )y

K

xh

Figure 4. Patch of elements K̂ .

If we cannot access node values (due to limited regularity), we define the following averaging
anisotropic interpolation operator ix :

ixu(x, y)|K =
r∑

i=0
�i (x)
i (y) (8)

where the values (functions in y) 
i (y) are averages of u in the surrounding of the interpolation
points (�i , y). For this averaging we use a variation of the Scott and Zhang interpolation operator
[20]. An excellent overview of the extension of averaging interpolation operators to anisotropic
meshes is given in [6]. Here we use a modification suitable for a partial interpolation.

The values 
i (y) are defined as averages of u over lines �i in x-direction. The line �i touches
the basis point �i and is entirely in one element K ′ ∈ K̂ . For basis points in the middle of the
elements (like �1 in Figure 4), we have �i ⊂K and �i is the line of width hx from the left to the
right part of the element K . The choice of �i is not unique for basis points on the (left and right)
boundaries of the element K (e.g. for �0 in Figure 4). Here we demand that for every (�0, y) in
K̄ , the line �0 is the same, in particular it does not depend on y. If the choice is not unique, we
choose for �i the line touching �i through the element K ′ ∈ K̂ with the largest mesh spacing h′

x .
Notice that the choice of �i depends on the Lagrange point �i only, not on the regarded element
K �(�i , y). For points (�i , y)∈K ∩K

′
, there is just one line �i either in element K or in element

K ′. Thus the resulting interpolant (8) is continuous in the whole domain �.
With this definition, let {�i } be polynomials of degree r defined by∫

�i
�i (s)� j (s)ds=	i j , i, j =0, . . . ,r (9)

We note from [6] that
hx�|�i |��hx , ‖�i‖L∞(�i ) ∼|�i |−1�h−1

x (10)

where � is the maximum local change of anisotropy within the triangulation �h :

�= max
K̂∈�h

{
max

K ,K ′∈K̂

{
�K
�K ′

}
:�K =max

{
hK ,x

hK ,y
,
hK ,y

hK ,x

}}
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Now we define the averages 
i (y) in (8) as


i (y) :=
∫

�i
u(s, y)�i (s)ds

Usually the optimal choice of these averaging lines �i is crucial for obtaining stable anisotropic
interpolation operators. Here, the situation is different (in fact more easy) since we interpolate into
an only partially discretized space. For ix the averaging lines �i are always aligned in x-direction,
for iy the lines are aligned in y-direction. The following stability result holds:

Lemma 2 (Stability of the interpolation operator ix )
For a function u with sufficient regularity, it holds on meshes of tensor product type

‖�x�lyixu‖K�c‖�x�lyu‖K̂ +c�1/2hy‖�x�l+1
y u‖K̂ , l∈N0

‖�lyixu‖K�c‖�lyu‖K̂ , l∈N0

Proof
We start with the second estimate. Since �i does not depend on y, we get from (8)

‖�lyixu‖2K �
r∑

i=0

∫ hx

0

∫ hy

0

(
�i (x)

∫
�i

�lyu(s, y)�i (s)ds

)2

dy dx

�
r∑

i=0
‖�i‖2L∞(K )‖�i‖2L∞(�i )

∫ hx

0
dx
∫ hy

0
|�i |

∫
�i

(�lyu(s, y))2 ds dy

� c
r∑

i=0
|�i |−1hx‖�lyu‖2

K̂
�c‖�lyu‖2

K̂
(11)

The case of the in-line derivative is more complicated. We will introduce a function w∈Vx to
be specified later, but satisfying �xw=0; thus, w(x, y)=w(y) on K̂ . With the trace theorem, we
have

‖�x�lyu‖2K �
r∑

i=0

∫ hx

0

∫ hy

0

(
�x�i (x)

∫
�i

(�lyu(s, y)−�lyw(y))�i (s)ds

)2

dy dx

� c|K |
r∑

i=0

(
‖�x�i‖2L∞(K )‖�i‖2L∞(�i ) sup

0�y�hy

(∫
�i

|�ly(u(s, y)−w(y))|ds
)2
)

� ch−2
x �−1(‖�ly(u−w)‖2

K̂
+h2x‖�x�ly(u−w)‖2

K̂
+h2y‖�l+1

y (u−w)‖2
K̂
) (12)

The results of the trace inequality will be analyzed separately. The choice of

w(y)= 1

|�|
∫

�
u(s, y)ds

leads with Poincare’s inequality to

‖�ly(u−w)‖K̂�chx‖�x�lyu‖K̂ , ‖�x�ly(u−w)‖K̂ =‖�x�lyu‖K̂ (13)
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In addition with

(u−w)(x, y)=u(x, y)− 1

|�|
∫

�
u(s, y)ds= 1

�

∫
�

∫ x

s
�xu(t, y)dt ds

it follows that

‖�l+1
y (u−w)‖K̂��hx‖�x�l+1

y u‖K̂ (14)

Combining (11)–(14) we get the result. On elements K touching the homogeneous Dirichlet
boundary, the argument holds with the choice w=0. �

Lemma 3 (Estimates for the nodal interpolation operator Nx )
Assuming sufficient regularity of u∈V , the following estimates hold on tensor product type meshes:

‖�ly(u−Nxu)‖K�hr+1
x ‖�r+1

x �lyu‖K , l∈N0

‖�x�ly(u−Nxu)‖K�hrx‖�r+1
x �lyu‖K , l∈N0

Proof
The interpolation error �(x, y) :=(u−Nxu)(x, y) has r+1 zeros for every y. Owing to the special
anisotropic character, this is also true for all y-derivatives of the interpolation error:

�l

�l y
�(�i , y)=0, i=0, . . . ,r, l∈N0

The estimates now follow as direct application of the one-dimensional L2 and H1 interpolation
estimates applied to � and �y�. �

Combining the stability result from Lemma 2 with Lemma 3 we get interpolation estimates for
the operator ix by standard arguments.

Lemma 4 (Interpolation estimates for the operator ix )
Assuming sufficient regularity of a function u∈V , the following interpolation estimates hold on
tensor product-type meshes:

‖u−ixu‖K�chr+1
x ‖�xu‖K̂

‖�x (u−ixu)‖K�chrx‖�r+1
x u‖K̂ +c�1/2hrxhy‖�r+1

x �yu‖K̂
‖�ly(u−ixu)‖K�chr+1

x ‖�r+1
x �lyu‖K̂ , l∈N

These estimates exhibit the properties of the partially discretized anisotropic function spaces.
Since the estimate in the cross direction (e.g. the y-derivative of the x-interpolation error) yields
a higher order, a separation of the error into the coordinate directions is possible. We note that
for functions vx ∈Vx , it holds that vx = ixvx =Nxvx . Further, the interpolation operators ix and iy
commute for all functions v∈V :

ihv := ix iyv= iyixv

Finally, we will state a special interpolation estimate of importance for anisotropic error estimation.
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Lemma 5 (Product interpolation estimate)
Assuming sufficient regularity of a function u∈V , the following estimates hold on tensor product-
type meshes for hx and hy small enough:

‖u+ihu−ixu−iyu‖=‖(id−ix )(id−iy)u‖�chr+1
x hr+1

y ‖�r+1
x �r+1

y u‖K̂
‖∇(u+ihu−ixu−iyu)‖=‖∇(id−ix )(id−iy)u‖�c�hrxh

r
y(hx +hy)‖�r+1

x �r+1
y u‖K̂

Proof
We will prove the second estimate. Introducing � :=(id−iy)u, Lemma 4 yields

‖∇(�−ix�)‖K�chrx (‖�r+1
x �‖K̂ +(hx +�1/2hy)‖�r+1

x �y�‖K̂ )

Lemma 4 together with the stability results for higher derivatives in the cross-direction in Lemma 2
applied to the right-hand side of this estimate gives

‖∇(id−ix )(id−iy)u‖K�chrxh
r
y(hx +hy+�1/2hy+�1/2hx +hxhy�)‖�r+1

x �r+1
y u‖K̂

Neglecting the higher-order term, the estimate follows for hx and hy small enough. The first
estimate holds by similar arguments. �

4.2. Anisotropic DWR

In this section we present a splitting of the functional error into directional errors

J (u)− J (uh)∼ J (u)− J (ux )+ J (u)− J (uy)

Then, a modification of the DWR framework allows for the estimation of these two directional
errors. We state the central result.

Theorem 2 (Anisotropic a posteriori error estimation)
For the Galerkin approximations x ∈ X and xh ∈ Xh of (3), the following a posteriori error estimate
holds:

J (u)− J (uh) = {J (u)− J (ux )}+{J (u)− J (uy)}+R

= 1

2

{
min
yx∈Xx

L ′(xh)(x− yx )+ min
yy∈Xy

L ′(xh)(x− yy)

}
+R (15)

where the dominant part of the remainder term R is given by R∼ R1+Rx +Ry with

R1 := L ′(xh)((id−ix )(id−iy)x)

Rx := L ′′(xh)(x−ix x, xx −xh)

Ry := L ′′(xh)(x−iy x, xy−xh)

For the proof of Theorem 2 we give two technical lemmas. For the ease of presentation we will
from now on denote by R(3) terms, which consist of the third derivatives of L(·) and which are
thus of third order in the arguments. If only one argument is given this appears thrice (like in (4));
otherwise, we indicate all arguments. First, we give an estimate concerning the splitting of the
isotropic error in the functional J (u)− J (uh) into directional errors.
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Lemma 6 (Splitting into directional errors)
For the Galerkin approximations x ∈ X , xh ∈ Xh , xx ∈ Xx and xy ∈ Xy of (3), we get the following
splitting of the error:

J (u)− J (uh)=(J (u)− J (ux ))+(J (u)− J (uy))+R

where the dominant part of the remainder R is given by

R∼ R1+Rx +Ry

with

R1 := L ′(xh)((id−ix )(id−iy)x), Rx := L ′′(xh)(x−ix x, xx −xh)

Ry := L ′′(xh)(x−iy x, xy−xh)

Proof
The remainder term R will be written as

R=(J (u)− J (uh))−(J (u)− J (ux ))−(J (u)− J (uy))

Applying Theorem 1 three times we get with arbitrary yh ∈ Xh , yy ∈ Xy and yx ∈ Xx :

R= 1
2 L

′(xh)(x− yh)− 1
2 L

′(xx )(x− yx )− 1
2 L

′(xy)(x− yy)+R(3)
1 (16)

with the third-order remainders from Theorem 1

R(3)
1 := R(3)(x−xh)+R(3)(x−xx )+R(3)(x−xy)

With the choice yh := ihx , yx := ix x and yy := iy x in (16) and by introducing ± 1
2 L

′(xh)(x−ix x)
and ± 1

2 L
′(xh)(x−iy x) we have

R = 1

2
L ′(xh)(ix x+iy x−x−ihx)︸ ︷︷ ︸

=R1

+1

2

∫ 1

0
L ′′(xx +s(xh−xx ))(x−ix x, xh−xx ) ds

+1

2

∫ 1

0
L ′′(xy+s(xh−xy))(x−iy x, xh−xy)ds+R(3)

1

Approximating the integrals with the box-rule at s=1, we conclude with

R= 1
2 (R1−Rx −Ry)+R(3)(x−ix x, xh−xx , xh−xx )+R(3)(x−iy x, xh−xy, xh−xy)+R(3)

1 �

The role of the remainder terms R1, Rx , Ry has to be analyzed separately for every equation and
will be discussed in Section 4.3. This lemma allows for a splitting of the functional error J (u)−
J (uh) into the directional errors J (u)− J (ux ) and J (u)− J (uy) in the coordinate directions. Instead
of simply applying Theorem 1 to estimate these directional errors, we introduce an additional
approximation to avoid the non-computable values xx and xy that would appear in the error
estimate.
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Lemma 7 (A posteriori estimate for directional error)
For the Galerkin approximations x ∈ X and xx ∈ Xx of (3), the following a posteriori estimate
holds:

J (u)− J (ux )= 1

2
min
yx∈Xx

L ′(xh)(x− yx )+R

where the dominant part of the remainder term R is given by R∼ Rx , with Rx as described in
Lemma 6.

Proof
Theorem 1 yields

J (u)− J (ux )= 1

2
min
yx∈Xx

L ′(xx )(x− yx )+R(3)(x−xx )

Similar to the proof of Lemma 6

L ′(xx )(x− yx ) = L ′(xh)(x− yx )+
∫ 1

0
L ′′(xh+s(xx −xh))(x− yx , xx −xh) ds

= L ′(xh)(x− yx )+L ′′(xh)(x− yx , xx −xh)+R(3)(x− yx , xh−xx , xh−xx )

With the choice yx = ix x the middle term turns to be Rx
x , which concludes the proof. �

Combining Lemmas 6 and 7 for both directional error J (u)− J (ux ) and J (u)− J (uy), the
central result Theorem 2 is proven. The remainder terms appearing are all third-order terms R(3)

or given by Rx , Ry or R1.

4.3. Discussion of the remainder terms

Here we discuss the remainder terms R1, Rx and Ry as well as the third-order remainders R(3)

arising in the process of splitting and estimating the error in detail. This discussion has to be
accomplished separately for every equation. Prototypically for elliptic PDE’s we discuss Poisson’s
equation with linear finite elements and homogeneous Dirichlet boundary values:

(∇u,∇�)=( f,�) ∀�∈V

We consider the functional

J (u)=‖u‖22
Assume that f and the domain � are of sufficient regularity to apply all interpolation estimates
from Section 4.1. Remarks on other (nonlinear) equations will be given where necessary. For
showing higher order of the remainders, O(h3) is necessary. Starting with R1, we introduce the
notation �(x) :=(id−ix )(id−iy)x and with integration by parts obtain

|R1| � |(∇uh,∇�(z))|+|(∇zh,∇�(u))|+|( f,�(u))|+2|(uh,�(u))|

� ‖�uh‖‖�(z)‖+‖�zh‖‖�(u)‖+(‖ f ‖+2‖uh‖)‖�(u)‖
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The first two terms arise from the main part of the differential equation, the third part is the
remainder from the right-hand side and the final one arises from the functional evaluation.
The boundary terms from integration by parts vanish, since �(x)=0 on the edges. With Lemma 5
we conclude

|R1|�ch2xh
2
y(‖�uh‖+‖�zh‖)(‖�2x�2yu‖+‖�2x�2yz‖)=O(h4)

Other equations lead to similar remainders. The worst case includes estimates for ‖∇�(x)‖=
O(h3) still of higher order. For example for the Navier–Stokes equations, we get remainders of
the type

|(uh ·∇�(u), zh)|�‖uh‖∞‖zh‖‖∇�(u)‖=O(h3)

Next, we will exemplarily discuss Rx for Poisson’s equation

Rx =(∇(u−ixu),∇(zx −zh))+(∇(z−ix z),∇(ux −uh))+2(u−ixu,u−ixu)

Here, the first two terms arise from differentiating the weak formulation of the Poisson equation,
the last term is the second derivative of the functional. Owing to linearity, the right-hand side f
has no influence in L ′′. A straightforward estimation of the functional term with Lemma 4 yields

2|(u−ixu,u−ixu)|=2‖u−ixu‖2�2ch4x‖�2xu‖2=O(h4)

The two other terms are more difficult to estimate. Simply applying Cauchy–Schwartz inequality
does not give the correct order

|(∇(u−ixu),∇(zx −zh))|�‖∇(u−ixu)‖‖∇(zx −zh)‖=O(h2) (17)

since it is the product of an H1 interpolation and an H1 approximation error. By splitting

(∇(u−ixu),∇(zx −zh))=(�x (u−ixu),�x (zx −zh))︸ ︷︷ ︸
=:Rx

x

+(�y(u−ixu),�y(zx −zh))︸ ︷︷ ︸
=:Ry

x

(18)

we can estimate the second part Ry
x using the higher-order interpolation result for the cross-

derivative in Lemma 4 by

|Ry
x |=|(�y(u−ixu),�y(zx−zh))|�‖�y(u−ixu)‖‖�y(zx−zh)‖�ch2x‖�2x�y y‖‖∇(zx −zh)‖=O(h3)

For estimating Rx
x we consult results from [21] shown for linear finite elements:

(∇(u−ihu),∇vh)�h2‖u‖3‖∇vh‖ ∀vh ∈Vh

A similar result can be shown for vx ∈Vx and anisotropic interpolation in x-direction:

(∇(u−ixu),∇vx )�h2x‖u‖3‖�xvx‖�h2x‖u‖3‖∇vx‖ ∀vx ∈Vx (19)
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On parallelograms K this term is even zero. Let K be a rectangle with sides aligned to the
coordinate system. Then, integration by parts yields

(�x (u−ixu),�xvx )K =−(u−ixu,�xxvx )+<u−ixu,�nvx >�K x=0

where �K x are the left and right sides of the element. Since vx is linear in x-direction, it holds
that vxx =0. Further, the interpolation error is zero on the left and right boundaries. This (stronger)
result can be generalized to parallelograms, if we split the derivatives (18) not in x- and y-
direction, but in the dominant directions given by the element K . Lemma 1 (ii) now demonstrates
that zx −zh ∈Vx

zx −zh =Rx (z−zh)=:vx ∈Vx

and with zx −zh ∈Vx we can apply (19) to obtain at least |Rx
x |=O(h3).

Terms not of second order, e.g. arising from (uh ·∇uh,�h) result in products of L2 and H1

(or L2) interpolation and approximation errors. Here, |Rx |=O(h3) is gained with the standard
estimate (17).

If a special character of the equation or the functional does not allow for a higher-order estimation
of Rx and Ry , these terms can be included into the error estimator. The next section will show a
way to numerically approximate the remainder terms.

For nonlinear equations the third-order remainder terms will be present, such as for the Navier–
Stokes equations we have

R(3)(x−xx )=2((u−ux ) ·∇(u−ux ), z−zx )

This product can be estimated as the product of one H1, a L2 and a L∞ approximation error.
A priori estimates then yield higher order.

4.4. Localization of the error estimator and mesh adaptation

Similar to (5) in Section 3 we introduce a local interpolation operator to approximate the inter-
polation errors x−ix x and x−iy x by a higher-order reconstruction. We exemplarily demonstrate

this easy strategy for the x-direction. By V (2r,2h)
x , we define the space of piece-wise polynomials

of degree r on a mesh of size h and degree 2r in direction x with mesh size 2h. The spaces Vh and
V (2r,2h)
x share the same DOF. Thus, we can define the nodal basis functions {�i

h} of Vh and {�i
x }

of V (2r,2h)
x with � j

h(�i )=� j
x (�i )=	i j in the supporting points �i for i, j =1, . . . ,N . This allows us

to define the discrete interpolation operator i (2r,2h)
x :Vh →V (2r,2h)

x applied to xh ∈Vh (see Figure 5

uh ix uh

(2r,2h)

Figure 5. Interpolation to fine space V (2r,2h)
x .
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for an example):

i (2r,2h)
x xh = i (2r,2h)

x
∑

xi�i
h =∑ xi�i

x (20)

Now we treat i (2r,2h)
x xh−xh as an approximation to x−ix x . The a posteriori error estimator from

Theorem 2 is evaluated as

J (u)− J (uh)≈ 1
2 L

′(xh)(i (2r,2h)
x xh−xh)︸ ︷︷ ︸
=:�x

+ 1
2 L

′(xh)(i (2r,2h)
y xh−xh)︸ ︷︷ ︸
=:�y

(21)

If we want to include the remainder terms Rx and Ry in error estimation, we approximate

Rx ≈ L ′′(xh)(i (2r,2h)
x xh−xh, i

(2r,2h)
y xh−xh)≈ Ry

since we can treat i (2r,2h)
y xh as a higher-order approximation to xx .

For mesh adaptation, we localize the estimators �x and �y to values �ix , �iy in the DOF. Using
(20) we can evaluate the directional error �x in (21) as the product

�x =∑
i

=:Li
x︷ ︸︸ ︷

1

2
L ′(xh)(�i

x −�i
h) x

i
h︸ ︷︷ ︸

=:�ix

=〈(Lx ), (xh)〉

It is well known that a simple restriction of residual terms to elements does not result in the
correct order. This is also true for the node-wise local values �ix . In general we have

∑
i |�ix |�

|∑i �
i
x |=|�x |, and the local values �ix are not suitable for mesh adaptation since they would result

in over refinement.
Let V (2h)

x be the space of piece-wise polynomials of degree r in all directions with mesh size
2h in direction x and h in the other directions. (This space is coarser in x-direction than Vh).
We show an example of the interpolation i (2h)

x :Vx →V (2h)
x into this coarse space in Figure 6. By

choosing for yx in (15) not yx = ix x but yx := ix x−i (2h)
x (x−ix x) followed by the approximation

of the interpolation error (x−ix x)≈(i (2r,2h)
x xh−xh), the error estimator �x features the correct

uh

(r,2h)
ix uh

Figure 6. Interpolation to coarse space V (2h)
x .

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:90–118
DOI: 10.1002/fld



ANISOTROPIC MESH REFINEMENT WITH THE DWR METHODS 107

local order. We then evaluate �x as

�x = 1
2 L

′(xh)((i (2r,2h)
x − id)(xh−i (2h)

x xh))=〈(Lx ), (xh−i (2h)
x xh)〉

With this localization of the error estimator, the mesh refinement algorithm is as follows: (replacing
Step (2) in Algorithm 1)

Algorithm 2: Anisotropic mesh refinement

(1) Estimate directional error indicators (�ix ) and (�iy)
(2) Calculate the mean of the absolute values �̄= 1

2N

∑N
i=1 |�ix |+|�iy |

(3a) If |�ix |>��̄ refine elements adjacent to i in x-direction.
(3b) If |�iy |>��̄ refine elements adjacent to i in y-direction.

The parameter � in the last step describes the locality of the refinement, not the threshold for
anisotropy. There are no parameters controlling the amount of anisotropy. The decision to refine
an element in one direction does not depend on the local error in the other directions. This strategy
aims at balancing the error in all elements and in all directions. Usually, we choose �∈[ 14 ,4].
Choices of �<1 lead to global refinement if the error is uniformly distributed over the mesh. Larger
values of � result in a sharper local refinement. If the problem and thus the error indicators are
symmetric, the resulting meshes will also be symmetric.

5. NUMERICAL EXAMPLES

In this section we will analyze the qualities of the meshes generated by the anisotropic error
estimator. First, we will illustrate the difference between the proposed adaptation method and
standard methods based on the recovery of derivatives for the identification of the anisotropy using
a specially constructed test case. Further we will analyze a simple three-dimensional convection–
diffusion problem showing the potential of anisotropic mesh refinement.

5.1. A pathological test case

For a better understanding of the difficulties related with output-oriented anisotropic mesh adap-
tation, we consider the convection–diffusion equation

− 1

200
�u+ux = 0 on �=(0,1)2

u =
{
g(y), (x, y)∈�1

0, (x, y)∈��/�1

(22)

The boundary function g(y) on �1={(0, y) :0�y�1} is a smooth regularization of g(y)=1 with
g(0)=g(1)=0:

g(y)= tanh(25y(1− y))= 1−e−50y(1−y)

1+e−50y(1+y)
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Figure 7. Sketch of primal (left) and adjoint (right) solution the first test case, Section 5.1.

As quantity of interest we evaluate the functional

J (u)=
∫

�2

�xu(0, y) ·g(y)dy

where �2 is the opposite side of �1. The weak formulation of (22) and the corresponding adjoint
equation are given by

u∈u0+V : 1

200

∫
�

∇u ·∇�dx+
∫

�
ux ·�dx=0 ∀�∈V, u0|�1

=g(y), u0|�/�1
=0

z∈ z0+V : 1

200

∫
�

∇z ·∇�dx+
∫

�
z ·�x dx=0 ∀�∈V, z0|�2

=g(y), z0|�/�2
=0

The strong formulation of the adjoint equation reads −0.005�z−zx =0, with z=g on �2. Thus
we have u(x, y)= z(1−x, y). In Figure 7 a sketch of the primal and adjoint solution is shown.

Neglecting the boundary perturbation due to the smoothing function, thus using g=1, the primal
solution would be given by

ug=1(x, y)= 1−e−200(1−x)

1−e−200

and features a strong boundary layer at �2. Thus, the adjoint solution has this boundary layer at
the opposite boundary �1. Common sense would suggest anisotropic refinement along the y-axes
at these two boundaries. Apart from the boundary layers, the primal and adjoint solutions are
constant, equal to one; the residual of the primal equation will be close to zero where the adjoint
solution has a boundary layer and vice versa. Including zero boundary values on the two remaining
boundary parts, the solution gets disturbed in the lower and upper part of the domain with (less
steep) boundary layers along the remaining two boundaries. These new layers are present in the
primal and dual solution.
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In the following we will compare different methods for anisotropic adaption. The set of elements
to be refined is always identified using the standard DWR method. How to refine every element
will be decided using the following strategies:
[D] Dual Hessian: Analyze Hessian matrix of z. Try to minimize interpolation error |z−ihz|K

on every element K .⎧⎪⎪⎨
⎪⎪⎩
h2x |zxx |K>�h2y |zyy |K refine in x-direction

h2x |zxx |K<�−1h2y |zyy |K refine in y-direction

otherwise refine isotropically

[M] Mixed Hessians: Analyze the product of the interpolation errors of the primal and dual
solution in the energy norm |∇(u−ihu) ·∇(z−ihz)|K on every element K .⎧⎪⎪⎨

⎪⎪⎩
h2x |uxx |K |zxx |K>�h2y |uyy |K |zyy |K refine in x-direction

h2x |uxx |K |zxx |K<�−1h2y |uyy |K |zyy |K refine in y-direction

otherwise refine isotropically

[A] Anisotropic DWR: Use Algorithm 2 in Section 4.4.

Remark 3

1. The first method is the standard approach for anisotropic refinement. Usually the Hessian
of the primal or dual solution is assembled by recovery techniques and decomposed. The
eigenvectors indicate the dominant directions, the eigenvalues the optimal stretching. Our
simplification applies to meshes parallel to the coordinate axes if we only allow for refinement
along these axes. This method can be generalized to higher polynomial degrees by using
higher derivatives.

2. The second approach tries to extract the anisotropy information using the primal and adjoint
solution by analyzing the energy errors of both problems.

3. The parameter � controls the balance of anisotropy. For linear finite elements, we choose the
value �=4. This choice stems from a local optimization consideration: By predicting the
error on the element K after refinement, what is the best balance between the number of
newly generated elements and the predicted error. Higher values of � yield less anisotropy.

4. The third approach does not need a separate decision of which element to refine and how to
refine the element. Using the directional indicators, we can analyze every direction indepen-
dently. If both conditions are effective, the element will be refined isotropically.

In Figure 8 the error for these three refinement methods along with the error on a globally refined
mesh is plotted. Only the anisotropic DWR method results in meshes with a better approximation
property than structured meshes.

For comparison, three meshes for the different methods are given in Figure 9. We only show
the lower left quart of the meshes (0,0.5)2⊂�. The meshes using adaption schemes [M] and [A]
are symmetric in both direction. The mesh connected to scheme [D] is only symmetric with regard
to the x-axis and with less refinement in the right half of the domain.
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Figure 8. Comparison of different kinds of anisotropic mesh control for the convection diffusion example.

Figure 9. Cutout of the meshes for the three kinds of anisotropic mesh control: [D], [M] and [A].

The left mesh corresponds to the first adaptation strategy. We get anisotropic boundary layers
where the dual solution has large derivatives. The plot in the middle shows the mesh using the
mixed strategy. Both solutions have large derivatives along the lower and upper boundary. This
method resolves only these layers. The (for the functional evaluation) more important left and
right boundaries are not resolved, since on both sides either the primal or the adjoint solution is
nearly constant and the product does not exhibit a considerably interpolation error. Finally, the
mesh using the anisotropic DWR method does not present a substantial anisotropic character. This
rather surprising result can only be achieved with the correct weighting of residuals and anisotropy
information in the directional estimator.

5.2. Three-dimensional convection–diffusion problem

We consider the convection diffusion equation in a domain containing a three-dimensional wing.
In Figure 10(a), we give a sketch of the configuration and the coarse mesh. This is a typical
geometry for three-dimensional flow problems. Here, we try to identify the possible savings using
anisotropic mesh refinement for this kind of geometry with a simplified equation. For stabilization
of the convective term, we use a stream upwind Petrov–Galerkin formulation:

(�∇u,∇�)+(ux ,�)+ ∑
K∈�h

(	K (ux −��u),�x )=0, �=10−3
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Figure 10. Convection—diffusion problem in a domain with a three-dimensional wing: (a) sketch of
geometry and coarse mesh and (b) error for global, for local isotropic and local anisotropic mesh refinement.

Table I. Functional values for the convection–diffusion problem. The reference
value is given as J (u)=0.774±10−4.

Global Isotropic Anisotropic

# elem J (uh) # elem J (uh) # elem J (uh)

400 0.8070 400 0.8070 400 0.8070
3 200 0.7909 2416 0.7868 1557 0.7889
25 600 0.7815 5804 0.7824 2688 0.7821
204 800 0.7788 38004 0.7791 10372 0.7787

118420 0.7761 18524 0.7766
211996 0.7753 44210 0.7751
641174 0.7747 87466 0.7744

where the stabilization parameter 	K depends on the local Peclet number. The boundary conditions
are homogeneous Dirichlet u=0 on the wing, u=1 on the left boundary (the ‘inflow’) and
homogeneous Neumann boundary on all the other sides. Mesh adaptation aims at minimizing the
error in the functional

J (u)=
∫

�w

�nu do

where�w is the boundary of the wing. Extrapolation yields the reference value Jref=0.7740±10−4.
In Table I we compare the results for global mesh refinement with adaptive isotropic and adaptive
anisotropic mesh refinements. Plots of the error are given in Figure 10(b). As should be expected,
there is a large benefit of using anisotropic mesh refinement for this problem. The trailing and
leading edges of the wing induce singularities (or at least sharp gradients) to the solution and
call for local refinement. In z-direction, the solution is very smooth, a large element stretching is
sufficient. This can only be achieved by anisotropic mesh refinement. Figure 11 gives a section
of the locally refined anisotropic mesh used in the calculations. The grey shaded elements are the
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Figure 11. Anisotropic mesh for the convection—diffusion problem.

surface of the wing. The maximum aspect ratio (relation between longest and shortest element
stretching) used in the calculation is 1 :200.

6. ANISOTROPIC NAVIER–STOKES

Finally, we apply the anisotropic adaptation method to a three-dimensional Navier–Stokes bench-
mark problem. For treating the Navier–Stokes equations

A(U )(�) :=(∇v,∇�)+(v ·∇v,�)−(p,∇ ·�)+(∇ ·v,�) (23)

we have to deal with stability problems, raised by the inf–sup condition as well as instabilities due
to the convective term. We address both issues with the local projection methods [9, 22] by adding
a stabilization term S(U )(�) including fluctuations with regard to a coarse space VH . Introducing
the local interpolation operator iH :Vh →VH and �H := id−iH , the local projection method is
given by

Ã(U )(�) := A(U )(�)+S(U )(�), S(U )(�)=(��H (∇ ph),∇�h)+(	�H (∇vh),∇�h) (24)

with stabilization parameters, �,	, element-wise depending on the local grid Peclet number

PeK =|v|K ,∞
hK


In [23] the extension of this stabilization method to anisotropic meshes for the Stokes system has
been introduced. The idea is to separately stabilize the partial derivatives using the dominant local
mesh directions. In [24] the local projection method has been formulated for the Oseen system
and optimal stability and approximation properties have been proven. For the ease of presentation,

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:90–118
DOI: 10.1002/fld



ANISOTROPIC MESH REFINEMENT WITH THE DWR METHODS 113

we describe the case of tensor–product meshes aligned with the coordinate axes. Further, let
hK ,y<hK ,x . The anisotropic stabilization term is then

S(U )(�) = (�x�H (�x ph),�x�h)+(�y�H (�y ph),�y�h)

+(	x�H (�xvh),�x�h)+(	y�H (�yvh),�y�h) (25)

with stabilization parameters chosen as

�x/y |K = h2K ,x/y


min(1,Pe−1

min), 	x/y |K =|v|2K ,∞�x/y |K

where Pemin is the local Peclet number depending on minimum mesh size hK ,y . In [24] stability
and error estimates have been shown in the triple norm

?U?2=‖∇v‖2+S(U )(U )= Ã(U )(U ) (26)

For linear finite elements with hK ,y<hK ,x on every element, the anisotropic a priori error estimate
holds:

?U−Uh?2 �
∑

K∈�h

h4K ,x

hK ,y
(C p

K ‖�x∇ p‖2K +Cv
K ‖�x∇v‖2K )

+h3K ,y(C
p
K ‖�y∇ p‖2K +Cv

K ‖�y∇v‖2K ) (27)

with

C p
K =min(Pemin,1)‖v‖−1

K ,∞ ∼ hK ,y


, Cv

K =h−1
K ,y+‖v‖K ,∞ ∼ 

hK ,y

This estimate exhibits the factor hmaxh
−1
min that can be arbitrary large. However, the estimate shows

the correct balancing of the terms on appropriate meshes, since this factor is scaled with the small
derivatives (in x-direction). The next section gives a numerical test for the stability of this scheme
on highly anisotropic meshes.

6.1. Stability of the local projection method on anisotropic meshes

Stability of the local projection stabilization (LPS) method on anisotropic meshes is demonstrated
on a variation of the Driven Cavity problem, driven by a forcing term on parts of the domain. On
a square of size �=(0,1)2, we prescribe homogeneous Dirichlet boundary values on all parts of
the boundary ��. The right-hand-side for the continuity equations is given as

f (x, y)=
(
fx (x, y)

0

)
, fx (x, y)=

⎧⎨
⎩1, (x, y)∈�1 :=

[
1
4 ,

3
4

]
×
[
3
4 ,

15
16

]
0, (x, y)∈�/�1

This special driving force is chosen to avoid effects by non-matching Dirichlet boundary conditions.
For Reynolds number Re=100, we estimate the value of

J (U )=
∫

�
|p|2+|∇v|2 dx (28)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:90–118
DOI: 10.1002/fld



114 T. RICHTER

Table II. Effectivity of the anisotropic error estimator for the Driven
Cavity test case on sequences of meshes.

# elements eh �h �x �y eh/�h eh/(�x +�y) a-r

(a) Isotropic global mesh refinement
1024 2.20×10−2 2.13×10−2 1.81×10−2 3.10×10−3 1.032 1.037 1
4096 5.33×10−3 5.34×10−3 4.57×10−3 7.60×10−4 0.998 1.000 1
16 384 1.33×10−3 1.33×10−3 1.14×10−3 1.89×10−4 0.999 0.999 1
65 536 3.32×10−4 3.32×10−4 2.85×10−4 4.70×10−5 0.999 1.000 1
262 144 8.30×10−5 8.30×10−5 7.13×10−5 1.17×10−5 0.999 0.999 1

(b) Anisotropic mesh refinement in x-direction
1024 2.20×10−2 2.13×10−2 1.81×10−2 3.10×10−2 1.032 1.037 40

4096 4.26×10−3 4.23×10−3 1.12×10−3 3.08×10−2 1.009 1.016 41

16 384 3.19×10−3 3.15×10−3 4.61×10−5 3.08×10−2 1.014 1.022 42

65 536 3.13×10−3 3.08×10−3 2.07×10−5 3.08×10−2 1.014 1.022 43

262 144 3.12×10−3 3.08×10−3 2.48×10−5 3.08×10−2 1.014 1.022 44

using piecewise linear finite elements. This problem does not feature a strong anisotropic character;
however, we can study the stability of the scheme with respect to anisotropic meshes. Further, we
get a hint of the robustness of the anisotropic DWR method and the splitting of the error into the
directional errors with respect to the aspect ratio. In Table II we list the error eh = J (u)− J (uh),
the estimated errors �h ∼ J (u)− J (uh) as well as the directional estimates �x ∼ J (u)− J (ux ) and
�y ∼ J (u)− J (uy) for a sequence of refined meshes. We further indicate the effectivity of the
isotropic a posteriori error estimator eh/�h and the effectivity of the splitting eh/(�x +�y). In
Table II(b) we see that even for high anisotropies, the anisotropic error estimator yields excellent
results. Further, the approximation quality does not degenerate on highly anisotropic meshes. Since
the anisotropic meshes do not suit the solution, the error does not converge to zero; however, the
approximation is stable.

6.2. Three-dimensional Navier–Stokes Flow

Finally, we apply the anisotropic adaptation method to the benchmark problem ‘Laminar Flow
Around a Cylinder’ [25]. This problem has been extensively studied with different continuous
FEMs. In this benchmark, from 1995 the accurate calculation of several functional values for
different configurations of the flow around an obstacle was asked for. Here, we analyze a laminar
flow with Reynolds number 20 around a square obstacle. Error estimation and mesh adaptation
are based on estimating the drag value of this obstacle. In Figure 12 the configuration of this test-
case is given.

Owing to the edges of the obstacle, this problem is very difficult. Singularities in the deriva-
tives of the solution foil the advantages of higher order methods, if no optimal local mesh
adaptation is used. In [3] the reference value cdrag=7.767±2 ·10−3 could be identified using
adaptive calculations involving 30 ·106 DOF on parallel computers. Table III and Figure 13
compare the results of the anisotropic calculation with the locally isotropic refined results taken
from [3].
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Figure 12. Configuration of the benchmark: laminar flow around a square obstacle.

Table III. Drag coefficient of the quadratic obstacle. Values for global and isotropic local
mesh refinement are taken from [3].

Global refinement Adaptive isotropic Adaptive anisotropic

# elements cdrag #elements cdrag # elements cdrag

78 13.315 624 8.0445 78 10.674
624 8.0445 2427 7.9742 220 8.0141
4 992 7.9759 7120 7.7881 1344 7.8596
39 936 7.7878 16808 7.7595 3124 7.7900
319 488 7.7579 54880 7.7620 5316 7.7787
2 555 904 7.7612 113128 7.7659 15948 7.7655

The reference value is 7.767±2 ·10−3.

With anisotropic local mesh refinement, a relative error of approximately 2·10−4 is achieved
on a mesh with seven times less elements than using isotropic local mesh refinement. The slight
differences in the drag values on the coarse mesh are due to small variations in the anisotropic
version of the local projection methods. All calculations start with the same initial mesh.

Although this problem does not feature a strong anisotropic behavior at this low Reynolds
number, the savings due to anisotropic meshes are considerably compared with an adaptive method
using isotropic meshes. Finally, in Figure 14 we show a cut-out of the locally refined mesh close
to the obstacle. The maximum aspect ratio in the mesh is about 1 :20.
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Figure 13. Relative error in the drag coefficient using different refinement methods. The values for global
and isotropic local refinement are taken from [3].

Figure 14. Anisotropic mesh at the obstacle. The maximum aspect ration used
is 1 :20 on the dark shaded elements at the edges.

7. SUMMARY

In this work we have demonstrated a method for automatic anisotropic mesh adaptation. This new
approach allows for a unified treatment of mesh refinement and anisotropy detection based on
the error in functional outputs. Numerical examples including a three-dimensional flow problem
demonstrate the feasibility and efficiency of this method. The essential part of the implementation—
here not described in detail—is a three-dimensional mesh structure making anisotropic bisection
of hexahedra possible.

This anisotropic adaptation scheme is limited to capturing anisotropies aligned with the elements
in the coarse mesh. Anisotropies going diagonally through the elements cannot be captured. The
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extension of this method to general anisotropies is not possible in this framework, since the
anisotropic error estimation is based on the partially discretized function spaces. We do not detect
where anisotropies are present and in which direction they proceed, we can just estimate directional
errors.

General anisotropies cannot be realized with adaptive methods based on hierarchical splitting of
quadrilateral or hexahedral elements. A remedy would be to remesh after some initial refinements.
Based on higher derivatives of the primal and adjoint solution, a new coarse mesh aligned to all
dominant anisotropies can be generated. The correct balancing is then established by restarting the
anisotropic adaptation scheme on this adapted coarse mesh.

For all numerical computations, the software library Gascoigne [26] was used. The visualization
of the meshes is done with Visual 3 developed by Bob Haimes at MIT.
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